Computation and Visualization of Musical Structures in Chord-Based Simplicial Complexes
نویسندگان
چکیده
We represent chord collections by simplicial complexes. A temporal organization of the chords corresponds to a path in the complex. A set of n-note chords equivalent up to transposition and inversion is represented by a complex related by its 1-skeleton to a generalized Tonnetz. Complexes are computed with MGS, a spatial computing language, and analyzed and visualized in Hexachord, a computer-aided music analysis environment. We introduce the notion of compliance, a measure of the ability of a chord-based simplicial complex to represent a musical object compactly. Some examples illustrate the use of this notion to characterize musical pieces and styles.
منابع مشابه
Spatial Transformations in Simplicial Chord Spaces
In this article, we present a set of musical transformations based on chord spaces representations derived from the Tonnetz. These chord spaces are formalized as simplicial complexes. A piece is represented in such a space by a trajectory. Spatial transformations are applied on these trajectories and induce a transformation of the original piece. These concepts are implemented in two applicatio...
متن کاملTopological Structures in Computer-Aided Music Analysis
We propose a spatial approach to musical analysis based on the notion of a chord complex. A chord complex is a labelled simplicial complex which represents a set of chords. The dimension of the elements of the complex and their neighbourhood relationships highlight the size of the chords and their intersections. Following a well-established tradition in set-theoretical and neo-Riemannian music ...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کامل